
Design report
Project eTROM

Author: Academic supervisor: Clients:
Lieke Turenhout Tom van Dijk Sarah Onrust
Max Jeltes Lotte Steenmeijer
Niels Kruk
Ruben de Koning
Sybe de Oude

Department of Computer Science

November 8, 2023

1

Abstract

This report gives a technical insight into the development of a fail-resistant, server-based solution to
handle real-time data for the Batavierenrace. The Batavierenrace is the world’s largest relay race with over
8500 runners participating each year and is completely organised by students from the University of
Twente and Saxion Enschede. This project is undertaken as part of the “Design Project” module of the
bachelor Technical Computer Science at the University of Twente.

As of now, the data management system that takes care of all data generated by the runners and volunteers
was created in 2003 and last updated in 2014. Being a Windows application that runs locally and requires
someone to be physically behind a computer to ensure everything runs smoothly. The eBART committee
of the Batavierenrace asked us to redesign the so-called “eBPC” and create a server-based solution that
can be accessed from anywhere by a select group of organisers. This new system must ensure that no data
is lost during a race, since stages of the relay race cannot be redone by the participants.

The new system, which will carry the name “eTROM: enhanced Time Registration Optimised for
Monitoring'', is a complex system starting with a message-server containing all logic for the data flows
and ensures the data is sent to the right places in the right format. To gain insight into all this data
processed by the message-server, we developed a web-application consisting of a React front-end and a
Spring Boot back-end connected to a PostgreSQL database. The technical details of these four main
components are discussed in this report together with the test plan used and an overview of all
stakeholders, abbreviations and requirements. At the end of the report, it was made clear which
requirements the final product was able to meet and which things could be improved in the future.

2

Contents

1. Introduction.. 5
2. Terminology and stakeholders.. 6

2.1 Abbreviations, acronyms and definitions.. 6
2.2 Stakeholders...8

3. Current system... 9
3.1 Architecture... 9
3.2 Functionality..10
3.3 eBPC.. 11

4. System proposal..12
4.1 Architecture... 12
4.2 Mock-ups... 12

5. Requirement specification... 14
5.1 Message server (MS)... 14
5.2 Front-end (FE)... 14
5.3 Back-end (BE)... 15
5.4 Database (DB)... 15

6. Global design.. 17
6.1 System architecture..17
6.2 Implementation technologies...17

6.2.1 Message Server.. 17
6.2.2 Front-end..18
6.2.3 Back-end.. 18
6.2.4 Database... 18

7. Detailed design..19
7.1 Justification of design choices...19

7.1.1 Message Server.. 19
7.1.2 Mockups...20
7.1.3 Front-end..20
7.1.4 Back-end.. 22
7.1.5 Database... 23

7.2 Security..26
8. Testing..27

8.1 Resources...27
8.2 Test plan...27

8.2.1 Unit testing...27

3

8.2.1.1 Message server... 27
8.2.1.2 Front-end.. 28
8.2.1.3 Back-end...28

8.2.2 Integration testing.. 29
8.2.3 Acceptance testing... 31

9. Conclusion...33
9.1 Requirements verification..33

9.1.1 Message server (MS)... 33
9.1.2 Front-end (FE)..33
9.1.3 Back-end (BE)..34
9.1.4 Database (DB)..34

9.2 Future work..35
9.3 Evaluation..36
9.4 Individual contributions...37

10. Bibliography... 38
Appendices.. 39

A. New system architecture...40
B. Front-end mock-ups.. 41
C. Front-end screenshots... 46
D. Database ER diagram... 57
E. Message server application state diagram...58

4

1. Introduction

The Batavierenrace (Bata) is the world's largest relay race, where thousands of students run 175
kilometres from Nijmegen to Enschede in 25 stages every year. The stages are divided into a night,
morning and afternoon shift. The first nine stages form the night shift, which runs from Nijmegen to Ulft.
In Ulft there is a restart after which the next eight runners run towards Barchem. After this, the last
segment heads towards Enschede, where the final restart occurs for the last two stages. The restarts are
used to reduce the distance between the runners and to ensure that the entire route does not have to be
closed off for traffic throughout the entire race.

To record the times of all runners, the Bata uses a self-developed time measurement system. All runners
wear a vest equipped with an RFID tag that is read by the registration cabinet (RK) at each exchange
point. The times are transmitted via RabbitMQ servers to the central computer in Enschede (eBPC). From
here the stage intermediate time is calculated and sent back to the RK via RabbitMQ. The eBPC also
forwards the information to the race secretary who keeps an overview of the race and is responsible for
the validity of the results. Finally, the eBPC shares the data with the public website of the Bata.

Currently, the eBPC is running locally on a Windows laptop. This application has to be started manually
every year and someone has to stay with it to monitor it. In addition, the data is only viewable on the
screen itself and cannot be viewed by other people from the organisation during the race. Also, the
application contains a lot of legacy code considering it was created around 2003. Therefore, it would be
good to recreate the application and use current technologies and standards.

The project will consist of replacing the eBPC for a web application. In addition to displaying the
available data, the web app will need to continue to support the current situation by receiving data from all
devices positioned in the race and by forwarding the data in the correct format to the race secretariat and
the Bata public website. In addition to this, the new application should support the existing
communication protocol through all the different formats of messages. By developing a web-app, we aim
to enhance its functionality, accessibility and user-experience. In addition, the aim of this project is to
scrutinise the existing eBPC application and see if improvements can be made to it. This could be both in
the internal code and the way certain connections are made. Or, for example, in the visual representation
of the application.

5

2. Terminology and stakeholders

This section gives an overview of all abbreviations used during the Batavierenrace by either the eBART
committee or the board of the Batavierenrace to establish a clear definition of all abbreviations, acronyms
and definitions used. Furthermore, an overview of the different stakeholders is provided.

2.1 Abbreviations, acronyms and definitions

The board and committees of the Batavierenrace utilise various abbreviations and acronyms for ease of
communication. These are also applied throughout the time registration system. To guarantee a common
understanding, the following list provides explanations for these abbreviations and acronyms.

Abbreviation/
Acronym

Meaning Explanation

AK Accukist (battery box) Large battery used at a WP to power several devices.

Bata Batavierenrace The world's largest relay race with over 8500 runners.

BataID Batavierenrace Identifier The BataID identifies which Batavierenrace component
created a log entry. Various components can create logs,
such as the different WP’s, the eBPC or the WS.

BE Beeper Device which makes a loud noise and bright light when
a runners tag is scanned by the RK at a WP.

BPW Bata public website Public website of the bata accessible worldwide.
During the race, times of the runners can be viewed
here once they are made official.

CC Commando centrum eBART headquarters during the race. From here all
WPs are managed and problems solved during the race.

CDB Central database Main database used by the bata to store all race data.
Multiple components forward their data to this DB
during the race.

DB Database -

DI Display Display used at each WP to view race times, team
information and the current time.

eBART extended Batavierenrace
Automatisch Registrerend
Tijdwaarnemingssysteem

All parts responsible for the time registration system,
such as the eBPC, RK’s and RFID tags. The eBART
committee is responsible for the functionality of this

6

system.

eBPC eBART Personal Computer The central computer in Enschede that used to run the
data management application.

eTROM enhanced Time
Registration Optimised for
Monitoring

The new system that replaces the eBPC.

KK Kabelkist (cable box) Used by a WP to power several devices and connect
them to each other.

KP Keypad Device used to enter the number of the runner that is
approaching the WP. This number is shown on the DI
and seen by the next runner of the team so he/she can
be prepared to take over.

LB Log (Logbook) Used to save all actions of WPs during the race.

LBI Logboekitem (Log book
item)

Data type used during the race to communicate from
the WS to the eBPC and all RKs.

LBR Logboekregel (Log book
line)

Data type used during the race to communicate from a
RK to eBPC.

PDA Personal Digital Assistant Small hand-computer used at a WP to add notes or
penalties to the system. This system is being replaced
by a tablet.

RFID tag Radio Frequency
Identification tag

Identification tag inside the vest of a runner used to
register stage times.

RK Registration Cabinet
(Registratie Kast)

Hardware component containing a Raspberry Pi and
RFID scanner which is used at each WP to scan runner
tags and forward the data to the eBPC via 4G.

RMQ Rabbit MQ Message queueing software used in the bata to buffer
messages between several applications.

TA Tablet Tablet used to display the RK web-interface. See WI
for more info.

UC Universiteitscompetetie
(university competition)

All university teams taking part in the race.

WI Web interface Website running on a tablet at each WP to monitor the
RK and add notes or penalties for certain teams.

WL Wedstrijdleiding Committee in the bata responsible for the safety of all

7

(race control) runners and volunteers.

WP Wisselpunt (waypoint) Each stage has a checkpoint at which the runner his tag
is scanned and registered to save a stage time.

WPP Wisselpunt ploeg
(waypoint team)

Group of about 8 volunteers responsible for managing
one WP.

WS Wedstrijdsecretariaat
(contest secretariat)

Committee in the bata responsible for validating run
times and handing out any penalties.

Table 2.1.1: Abbreviations/Acronyms with their meaning and an explanation

2.2 Stakeholders

During the Batavierenrace, multiple end-users work with the time registration system. The primary
stakeholders who interact with the application most extensively are the eBPC administrators from the
eBART committee. Their responsibility is to maintain an overview of all the runners, waypoints and
devices throughout the entire race, using the application. Therefore, it is essential that the application is
clear and well-organised to ensure optimal user experience for the administrators when working with the
system.

In addition to the eBPC administrators, there are also several indirect stakeholders. Firstly, there are the
runners who wear the vests with the RFID tag and run through the waypoints where the tags are scanned.
Secondly, there are the individuals who set up the devices at the waypoints and ensure everything is
working properly. Finally, there is the race secretariat which tracks whether all registered times are valid
and administers penalties when necessary. They also ensure that the times are accurately displayed on the
public website of the Batavierenrace.

8

3. Current system

The current system used by the eBART committee will be explained in this section. It should give a clear
overview of the system as a whole and address its pitfalls. We’ll give more in-depth explanations on the
RabbitMQ architecture, the setup of the Batavierenrace and the logic inside the current eBPC.

3.1 Architecture

Currently, the bata uses the following system architecture (see Figure 3.1.1). At the top you see several
devices sending messages to several RMQ exchanges (arrow symbols). Based on a routing key, these
messages are forwarded to the correct RMQ queue (yellow symbols). The green arrows represent
consumer data streams where devices retrieve messages from the queue for processing. By the bata, RMQ
was chosen to temporarily buffer all messages. This allows an application to process messages when it is
available and has time. Using RMQ within the architecture provides stability, a smaller error rate and
better storage of messages in case something goes wrong. The key components for this project are the
eBPC, the RKs, the queues lbr-rk* and the queue eBPC.

Figure 3.1.1: RMQ Architecture of the current system

9

3.2 Functionality

The diagram in Figure 3.2.1 shows how the eBART system currently works. During the race, there are 9
WPP driving around in a van carrying an eBART set. This set includes an RK, DI, KP, TA, BE, KK, AK
and PDA. All of these components are needed to facilitate timekeeping at a WP. As soon as a runner
approaches a WP, the team's number is entered into the keypad. The team number is then displayed on the
DI so the next runner can get ready to start. Once the runner passes the RK, the tag is scanned and an LBR
message is sent to the eBPC via intermediate exchanges. This message is sent from the RK over a 4G
connection. The eBPC continuously checks if there are LBR messages ready in the eBPC queue. As soon
as a message is ready, the eBPC retrieves it and processes the message. The message is converted to an
LBI message (in XML) that is sent to the WS and the BPW via several exchanges. The message is also
sent to the CDB. Finally, the time registration of the runner on WP 1 is forwarded to WP 2 (via queue
lbr-rk-2). In this way, WP 2 can use the registered time of WP 1 to calculate a provisional stage time once
the runner arrives at WP 2. This time is not official and is only displayed on the DI at WP 2. In addition to
automatic timekeeping, the RK can also be used to transmit penalties, start information, tag information
and messages to the eBPC. All this information is created on the TA and processed by the eBPC once it is
received. Based on the type of the LBR message, data may be forwarded to the WS via an LBI message.

Figure 3.2.1: the eBART architecture with two WP’s.

10

3.3 eBPC

The eBPC is an import application within the current bata time registration system. The current eBPC
application is a local Microsoft .NET app. This application is used every year during the race to process
all race messages. The application is being run on a Windows laptop. The application was built more than
10 years ago and is therefore very outdated. In the meantime, the application has been maintained but
nothing has changed in the core code. The application connects to RabbitMQ to communicate with all the
RKs, the WS and the BPW. The user interface shows the status of all waypoints/RKs, incoming LBR
messages and registered RFID tags. Also, an existing RFID tag can be linked to a particular team. To store
data, the application connects to a local SQLite DB. This stores all incoming and outgoing messages. The
messages are also stored here in local text files as an additional backup.

One drawback of the current application is that it has to be physically started every year on a Windows
laptop and someone has to be there the entire race to see if it is still running properly. Another issue is that
the data in the user interface can only be viewed by the person sitting in front of the Windows laptop. A
solution more appropriate to the current world would be a website where multiple people could see the
data at the same time from any location.

Figure 3.3.1: Screenshot of the current eBPC

11

4. System proposal

The new system will have some major changes compared to the current system. Here, we will go more
in-depth on how the four main components of the new system will interact with each other and show the
initial mockups of the front-end.

4.1 Architecture

The new system will replace the current eBPC application. For an overview of the new system
architecture see Appendix A. The main driver for developing the new eBPC is to make it more accessible
and easier to update. That is why we chose to develop a website instead of a local Windows application.
The website was realised in the form of a React web server. In order to retrieve data from the front-end, a
Spring Boot back-end was developed. This back-end will retrieve data from a PostgreSQL DB.
Processing and sending all the different messages from all the RKs and the WS will be handled by a
headless Python application (message server). This application will connect to RabbitMQ to retrieve and
send messages. All the data coming from the messages will be stored in the PostgreSQL DB.

The 4 applications (front-end, back-end, PostgreSQL DB and message server) will each run in a separate
Docker container on the bata server. This will eliminate the need to manually boot up the Windows laptop
and run the application. Starting all 3 applications should be easy with just a few commands via SSH.

4.2 Mock-ups

Before the development of a fully-fledged front-end, firstly some mock-ups were made. These mock-ups
were made using the web-based user interface design tool “Balsamiq Cloud”. This design phase allowed
us to visualise and plan the user interface of the web application. With the mockups, a concept of the
system and its eventual implementation was created. The idea was to design a user-friendly interface that
aligns with the needs and expectations of the eBART committee. By presenting these mockups early in
the project and getting feedback on them, an efficient development of the front-end was achieved. The
input of the eBART committee provided valuable insights and refined the design. An example of a
mock-up page can be seen in Figure 4.2.1

12

Figure 4.2.1: A Mock-up page for the waypoint specification

For an in-depth discussion about the design choices for the mockups/front-end, see Section 7.1.2. The
entire design of the mock-ups can be found in Appendix B.

13

5. Requirement specification

In this section, the requirements of the system are listed. These are divided by application to be
developed, including the database. To prioritise the requirements, the MoSCoW method has been used.
This means that each requirement has been given a certain category. The categories are: must have (M),
should have (S), could have (C) and won't have (W).

5.1 Message server (MS)

ID Priority Description

MS-1 M Communicate with RMQ server by consuming messages from the RK queues and
publishing messages to the eBPC queue.

MS-2 M Store and retrieve data from a PostgreSQL DB.
MS-3 M Process log entries (LBR format) coming from each active RK via RMQ.
MS-4 M Forward received LBR messages as LBI messages to the correct RMQ exchange.
MS-5 M Store incoming and outgoing messages in the DB.
MS-6 M Store incoming and outgoing messages in local text files.
MS-7 M Forward time registrations and transponder registrations to the correct RKs.
MS-8 M Convert an LBR to an LBI message.
MS-9 M Process the received LBR and LBI messages based on the existing eBART protocol.
MS-10 S Log all actions done in the MS.
MS-11 S Restart the application without losing any data.
MS-12 S Configure RMQ and database settings in a local configuration file.
MS-13 S Create unit tests for all developed features.
MS-14 C Save information in a structured way inside the DB.
MS-15 C Being able to test the MS by processing old race data (containing LBR lines) from a

text file.
MS-16 C Run inside a docker container.
MS-17 C Handle losing DB connection by retrying the connection till it succeeds.
MS-18 C Use multiple environments (production, testing, development) to switch between

different configurations.

Table 5.1.1: MoSCoW requirements for the message server

5.2 Front-end (FE)

ID Priority Description
FE-1 M Show both manual and automatic runner registrations.
FE-2 M Show WP status information (used RK, open/closed, # runners passed, time since

last message received).
FE-3 M Show log of received messages by the MS.
FE-4 M Register a back-up transponder and connect it to a certain team.

14

FE-5 M Data from/to the back-end is formatted in JSON.
FE-6 M MS environment can be configured.
FE-7 M All data in the DB can be cleared.
FE-8 S Retrieve and send data from/to the back-end via HTTPS requests.
FE-9 S The website should not be publicly available and therefore protected by a login.
FE-10 C Custom log entries can be registered.
FE-11 C Status of components can be managed (in which set they are currently).
FE-12 C Notes can be viewed and created. This note could contain a device and/or waypoint.
FE-13 C Store user and session information of users that login into the website.
FE-14 C Show the battery status of a RK.
FE-15 C Show log of received messages per WP.
FE-16 C All log files of the MS can be cleared.
FE-17 C Run inside a Docker container.
FE-18 W Keep track of the status of components like working or defective.

Table 5.2.1: MoSCoW requirements for the front-end

5.3 Back-end (BE)

ID Priority Description
BE-1 M Retrieve and insert data from/in the DB via a JDBC connection.
BE-2 M Process HTTPS requests from the BE and answer in JSON format.
BE-3 M Configure DB settings inside a local configuration file.
BE-4 M Store data inside the DB in a clear and structured way.
BE-5 C Run inside a Docker container.

Table 5.3.1: MoSCoW requirements for the back-end

5.4 Database (DB)

ID Priority Description
DB-1 M Store received LBR and LBI messages.
DB-2 M Store sent LBI and EBPC messages.
DB-3 M Store devices and status of each device (should be updatable).
DB-4 M Store status of a waypoint (should be updatable).
DB-5 M Store runner registration information.
DB-6 S Store received messages that have an incorrect format/structure.
DB-7 S Store team information.
DB-8 S Store transponder information.
DB-9 S Store battery status information (should be updatable).
DB-10 S Store notes created in the front-end. Optionally connected to a WP or RK.
DB-11 C Store team notes of normal teams.
DB-12 C Store team notes of university teams.

15

DB-13 C Store display info messages.
DB-14 C Store start times of teams.
DB-15 C Store start procedures of teams.
DB-16 C Store device messages received from both an RK and the WS.
DB-17 C Store user information for the front-end.
DB-19 C Store status of components (in which set they are currently, should be updatable).

Table 5.4.1: MoSCoW requirements for the back-end

16

6. Global design

In this section, the global architecture of the system is explained in order to get a clear understanding of
the overall system and its components. Additionally, the frameworks, programming languages and
libraries that we used, are elaborated upon.

6.1 System architecture

In Figure 6.1.1 you find a schematic diagram of the software system architecture. All applications that are
implemented during this project can be run as separate Docker containers inside a Docker stack. Using
one docker-compose file the entire stack can be easily configured and started. The RabbitMQ server
pictured in the schema is already existing and maintained by the bata. All applications are explained in
more detail in the subparagraphs 6.2.1 - 6.2.4.

Figure 6.1.1: Schematic diagram of the software system architecture

6.2 Implementation technologies

As can be seen in the system architecture diagram in Figure 6.1.1, every component of the system is
developed using a specific framework or programming language. In this section, the choices for these are
explained.

6.2.1 Message Server

The message server is developed in Python. The reason for using this programming language is that each
member of our project team was already familiar with Python and there are many packages available to
use. Furthermore, the functionality of the message server does not require the application to have a visual
interface so Python fits perfectly in the goal to make a headless server application. To connect to the
existing RabbitMQ broker on the bata server we have used the package Pika. This provides an
out-of-the-box synchronous client which can consume and publish messages from/to a RabbitMQ server.
The PostgreSQL DB connection is set up using the psycopg2 package. Logging application status and

17

error messages is done using the default logging Python package. XML parsing is done using
ElementTree. Unit Testing is implemented using the default unittest Python package.

6.2.2 Front-end

The front-end is developed using the React framework. React is a highly popular open-source library that
uses JavaScript as the underlying programming language. The reason for using this framework is that the
eBART committee as well as one of our team members were already familiar with it. Additionally, a
reason for using React is that it is relatively easy to work with due to its simplicity and flexibility. To
simplify and enhance the development process, the Devias Material Kit Pro1 from GitHub was used as a
template. This kit provides a set of pre-designed components and styles but also allows to build upon
those in order to customise the user-interface to meet the client's needs. Utilising this kit enabled the team
to quickly understand the fundamentals of React, leading to the implementation of a basic design in a
short amount of time.

6.2.3 Back-end

The back-end is developed using Spring Boot. Spring Boot is commonly used in the industry to make web
applications and microservices with the Spring framework faster and easier. As Java is known to a lot of
programmers, including the whole project group and the eBART committee of the Batavierenrace, we
decided to use Spring Boot for the project.

6.2.4 Database

The database is created/maintained using PostgreSQL. Several team members already had previous
experience using this so it seemed like a logical choice to use this.

18

7. Detailed design

In this section, we explain the design choices for each component of the system and how they work
together. Furthermore, we describe the choice for using certain security measures.

7.1 Justification of design choices

Compared to the current eBPC application, the proposed architecture is quite different and more
comprehensive. Whereas the current eBPC is a Microsoft GUI application running locally on a Windows
laptop, in the new system this has been replaced by 3 applications (message server, back-end and
front-end). The main reason for this is that we wanted to separate the handling and processing of
messages from their display to the eBART committee. Reason for this is the required robustness and
reliability of the system. If we were to process both message handling and visualisation in 1 application
and then something goes wrong with the visualisation, the MS crashes and thus message handling stops as
well. This may absolutely not happen as the race may then have to be stopped as the times of the runners
cannot be handled. In the new system, both back-end and front-end can crash while the message server
remains active and continues to handle and forward messages. Should the message server still fail for
whatever reason, all RKs continue to store and send their data locally to the RMQ server. Once the
message server is active again, all messages in the queue will be processed. However, this is far from ideal
as several parts of the system would not work in the meantime such as forwarding run times to the next
RK to calculate a provisional stage time and show it at the next WP.

7.1.1 Message Server

The two main desired functionalities of the message server are receiving and sending messages via RMQ
and extracting/saving data from these messages to the database. To connect to both the DB server and the
RMQ server, the MS contains two Python files that each take care of a connection. The DB connection is
set up when the MS is started and maintained for the duration of the run. Once the connection is lost, a
new connection is attempted. If this fails, a log is made of this and the MS continues to try to connect.
Without a connection to the DB, no messages can be handled from RMQ. This is because the database
connection is required to store all the information in the messages so that it can be displayed in the
front-end. The RMQ connection on the other side works pretty much the same. It too is set up at MS
startup and will reconnect once the connection is lost. For now, a synchronous connection has been
chosen where handling an incoming message occupies the only main thread available within the
programme. Therefore, multiple messages cannot currently be handled simultaneously. Should it later turn
out that handling the incoming messages is not fast enough, it is always possible to switch to an
asynchronous connection and parallel threading. However, this requires more programming knowledge
and is more difficult to debug.

To get a better understanding of how the MS works, appendix E of this document contains an application
state diagram. This diagram broadly shows the logic incorporated in the MS and the order in which
actions are performed.

19

7.1.2 Mockups

The first step towards designing a front-end was by making some mockups. The designed mock-ups
represent all (important) pages of the web application. Both minor and major design choices were
discussed with the eBART committee. An example of a minor design choice is the difference between
appendix Figure B.1 and Figure B.2. In these two images, two simplistic designs for a login page are
shown. With such minor, primarily visual adjustments, the eBART committee determined that the project
team had the flexibility to exercise creative freedom in choosing an optimal layout.

During the mockup discussions with the client, another design decision emerged: The eBART committee
expressed that the “Home page”, as in Figure B.3, was not needed. Given the ease of navigation between
the pages using the sidebar, a distinct homepage was deemed unnecessary. Instead, their preference was
for the default page to be the waypoints overview page.

Speaking of the waypoints overview page: Another major design choice concerned the visualisation of
data. The current system mainly uses tables to visualise data (see Figure 3.3.1). The eBART committee
showed great interest in the design of the proposed aesthetical visualisation of the WP overview page (see
Figure B.4, compared to Figure B.5). It was made clear that the tabular layout from the current eBPC was
not a necessity for the future. So, in the new design, these tables are replaced with a visual, more
aesthetically pleasing, layout where possible.

7.1.3 Front-end

The initial meetings with the eBART, during which the scope of the project and later on the mockups
were discussed, offered a clear view of the desired front-end. These early meetings provided insights into
both the visual and functional requirements. This led to a quick and efficient development of the
front-end.

As explained at the global design (see Section 6.2.2), React was used for the front-end. React is a
JavaScript library that can be used as a framework. Furthermore, we used the Material UI component
library (https://mui.com/) to have a good design base and use existing well-defined components.

The first page that the user sees when accessing the website is the login page. The authentication is done
via Google Oauth2. With the eBART it was discussed that all members should already have a Google
account since the committee is currently also using Google Drive. Because of this it was no problem to
have the authentication done by whitelisting Google emails. For more details about the security aspect see
Section 7.2.

In Figure 7.1.3.1 a screenshot of the waypoint overview page is shown. On the left, there is a side
navigation menu that allows the user to easily navigate between the different pages. In the middle, an
overview of the waypoints is shown. As discussed in the detailed design section about the mockups (see
Section 7.1.2), this visual representation was preferred over the tabular format. All elements from the
current system are shown in a visual representation. Note that the current overview page of the eBPC, as
shown in Figure 3.3.1, has fields for battery statuses of the RK. Currently, however, this field is not in use

20

https://mui.com/

as the RK’s do not send their battery information to the eBPC. Therefore, it was decided to leave this out
in the front-end. We did add a function in the back-end that can handle this in case the eBART decides to
implement the sending of battery information in the future.

Figure 7.1.3.1: The waypoint overview page of the front-end

The Batavierenrace consists of 25 stages, which are divided into a night, morning and afternoon shift. The
user can select a shift at the top menu, which will show the corresponding waypoints. This design cleverly
avoids the issue of screen congestion that would occur if all 25 waypoints were squeezed onto a single
display. Throughout the Batavierenrace, it is impossible for two shifts to be active simultaneously. So, this
design also makes sure that only relevant information is shown. In the top left corner of each waypoint,
the BataID is matched with the WP. Here, the BataID shows which RK is placed at which WP. In
principle, the Bata starts with ‘RK set A’ at WP-1, set B at WP-2, et cetera. For the morning shift the RK’s
are moved towards the next waypoints, such that set A normally ends up at WP-10. During the race,
however, it is possible that RK’s are placed at a different location. It can also be the case that a spare RK
is used. Therefore, the overview page neatly shows which RK is at which WP.

Furthermore, the waypoints overview page shows whether a certain waypoint is opened/closed with a
green/red dot in the top right corner. The waypoint shows the amount of runners that passed the
checkpoint and when the last message was received. Clicking on the box of a waypoint brings the user to
the waypoint specification page of that specific waypoint.

The full overview of all pages in the front-end can be found in Appendix C. For a detailed page-by-page
breakdown of the front-end and its functionality, refer to the eTROM manual.

21

7.1.4 Back-end

For the back-end, a piece of software that could handle the communication between the DB and the
front-end was required. Hence, we developed a RESTful API. This API serves as an interface that
manages the communication between the front-end and the back-end of a system. In our case, it handles
the requests from the webpage and fetches the required data from the DB. There are different types of
requests possible (see Table 7.1.4.1)

Request type Usage

GET Used to retrieve a resource

POST Used to create a new resource

PATCH Used to update an existing resource, including partial updates

DELETE Used to delete a resource

Table 7.1.4.1: HTTP methods of the RESTful API

After outlining the possible types of requests in the Table 7.1.4.1, it is important to emphasise that each
request serves a specific purpose in handling the communication between the front-end and the database.
For instance, when looking at the note endpoint, a GET request is used to fetch all notes, a POST request
is used to add a note, a PATCH request updates an existing note, and a DELETE request is used to delete a
note. Each request has a specific response structure, specifying the information to be fetched from the DB.
To fully document all different requests, our team has created an extensive API specification document
(see file attached to this report). This document outlines all possible requests, providing details for each
request, including the type of request, the response structure and an example response. This ensures a
detailed and consistent understanding of the communication protocols in our system.

To ensure the proper functioning of the system, it is crucial to implement error handling. This is necessary
in case a request fails or if the API encounters difficulties fetching the required information from the DB.
When implementing error handling, the team tried to align closely with the standard HTTP and REST
conventions. This is done in order to maintain clarity and understanding in the error messages generated
(see Table 7.1.4.2).

Error code Meaning

400 Bad Request The request was malformed. The response body will include an error
providing further information

401 Unauthorised The provided authorization token is not valid (anymore)

404 Not Found The requested resource did not exist

22

500 Internal Server Error Either the request was invalid and the server cannot process the
request or the request was valid but the server encountered an
unexpected condition that prevented it from fulfilling the request

Table 7.1.4.2: HTTP error codes

The implementation of the API contains different components. Each component has a specific role in the
application. These components are organised in a Model-View-Controller (MVC2) pattern, where the
Model represents the data, the View represents the user interface, and the Controller manages the user
input and updates the Model and the View accordingly. In our application, five components are
implemented. Firstly, the controller. This component handles incoming requests and makes use of the
other components to compose a response if necessary. Secondly, the Data Transfer Object (DTO3). A DTO
exchanges data between the client and the database. They can contain data from multiple entities and are
returned to the client upon request. Thirdly, the entities. Entities represent data objects that are directly
connected to the database. Entities can also be seen as models. Lastly, the repository. This component is
responsible for the connection between the application and the back-end containing SQL queries and is
able to immediately convert data to an entity. By default, Spring Boot creates simple queries for you.
However, when working with a lot of data, it is beneficial to overwrite these queries with your own.
Spring Boot always consists of at least these components, but when the back-end also has to contain a lot
of logic, the logic can be moved to Service classes. In our case, the logic is minimal and we mostly return
data immediately from the database through DTO’s. Therefore, we decided to keep the minimal logic we
have inside the controllers. Additionally, this saves us some time as we only have to test the controllers.

7.1.5 Database

Before creating the DB design, we first looked at the DB structure of the current eBPC. It turned out that
it had few relational tables, requiring many filters to visualise the data in the GUI. Additionally, certain
data, such as incorrect messages and user information, was not stored. The new DB is based on a
relational structure where each type of data has its own table. In addition, we chose to store the meanings
of all kinds of data from the eBART message protocol. An example is that a record can have type A.
According to the protocol, this means that it is an automatic registration. To show this in the front-end, the
back-end can extract this information directly from the database by having a table registration_type in
which this information is defined.

In Table 7.1.5.1 is an explanation of each table's function and what other tables it links to.

Table Links to Contains/function

battery_status received_message,
battery_status_type

Status (actual voltage) of batteries used at waypoints
during the race.

battery_status_type Descriptions of battery_status types.

component component_type Keep track of which components are used at every WP

23

and in which component set they are contained.

component_set Set of components.

component_type Descriptions of component types.

device device_type,
battery_status,
received_message,
sent_ebpc_msg_id

Mapped to BataID in the eBART protocol. Physical
devices which are able to send/receive RMQ messages.

device_message device Messages broadcasted from a device during the race.
This will mainly be the WS sending messages.

device_message_frag
ment

device,
device_message,
received_message

If a RK sends a device_message this message is split
into multiple LBRs due to size constraints of the LBR
message. Split fragments of the message are stored in
this table.

device_type Descriptions of device types.

device_waypoint device, waypoint Keep track of which waypoint a RK is located during
the race. Contains both historical and actual data.

display_info received_message Information (sponsors, rankings, etc.) which is
displayed at a WP on a screen during the race.

note device, waypoint Used by the front-end to add notes during the race.
Optionally connected to a waypoint and/or device.

ping ping_type, device Ping tests are done by devices via RMQ. The results of
ping tests done with the MS are stored here.

ping_type Descriptions of ping types.

received_incorrect_me
ssage

Messages received via RMQ (both LBR and LBI) that
have an incorrect format or structure.

received_message device, team All received LBR and LBI messages with correct
format.

registration registration_type,
received_message

Runner time registrations received from all RKs during
the race.

registration_type Descriptions of registration types.

sent_message_
ebpc

device EBPC messages still to be sent or already sent to an
RK.

24

sent_message_lbi LBI messages still to be sent or already sent to the
correct RMQ exchange. This is mostly LBR messages
that are converted to LBI and forwarded to WS, CDB
and BPW.

setting Used to store several settings from the front-end like
reset of DB, reset of MS logs and changing MS
environment.

start_procedure start_procedure_type
, received_message

Start procedures performed by a WP during the race.

start_procedure_type Descriptions of start procedure types.

start_time received_message Start times of all teams in a certain group for a specific
stage during the race.

start_time_team start_time, team Many-to-many couple table between start_time and
team.

team team_type Team of runners that is participating in the race.

team_note team_note_type Penalties for non-university teams. Can be added by a
WP or by WS.

team_note_type Descriptions of team note types.

team_type Descriptions of team types.

transponder transponder_type,
team,
received_message

Transponder registrations done by either an WP or
manually added in the front-end.

transponder_type Descriptions of transponder types.

university_team_note university_team_not
e_type,
received_message

Penalties for university teams. Can be added by a WP
or by WS.

university_team_note_
type

Descriptions of university team note types.

user Log-in sessions of front-end users.

waypoint Waypoints used in the race.

waypoint_status waypoint,
waypoint_status_typ
e, received_message

Keep track of the actual status of a waypoint during the
race. Does not save historical data.

25

waypoint_status_type Descriptions of waypoint status types.

Table 7.1.5.1: Explanation and links of tables in the database

7.2 Security

As mentioned earlier, currently the eBPC operates on a Windows laptop, requiring the physical presence
of the eBART committee to login to the computer and start the application. Given that the new system is
web-based, it requires a secure login mechanism. Without this, there is a risk of unauthorised access to the
Batavierenrace data, which should only be accessible to members of the eBART committee and the WS.
To address this, the new system implements a secure login page. Initially, a simple password system was
considered. However, the team eventually opted for a more robust option. Hence, the new system uses
Google OAuth23, ensuring an elevated level of security and control over who has access to the system.

OAuth2, denoting Open Authorisation 2.0, allows users to log in using their Google credentials. The
database stores a whitelist of the email addresses of all the users that are allowed to access the system.
When a user attempts to login to the system, they are redirected to the Google login page to enter their
Google credentials. Google then authenticates the user and generates a Google Oauth2 identity JSON Web
Token. This token is sent to the Google OAuth2 verifier in the back-end, which checks if the token is
valid and matches with an email address in the whitelist. If the email is on the whitelist, the user is granted
access, otherwise access is denied. Following this initial authentication and verification against the
whitelist, the user receives a session token. When the user navigates within the web application, this token
is included in the request parameters. When the back-end receives a request it verifies the session token
by checking if it is the same one as issued during the user’s authentication and if it has not expired yet. If
valid, the server grants access to the requested resource, otherwise the server denies access and the user
will need to re-authenticate.

The reason for choosing Google OAuth2 is because it is relatively easy to implement and yet provides a
secure authentication protocol. Additionally, other applications within the Bata system already utilise
Google authentication, and the eBART committee uses Google Drive for documentation. This means that
everyone who will work with the new system should already have a Google account, making Google
OAuth2 a secure, easily implementable option which will work for all intended users.

26

8. Testing

To verify that all applications within the system work as we expect, we used 3 different types of testing.
Using unit tests, we tested functions at a low level within the code. Using an integration test, we tested the
integration of the different systems together. Finally, we used (user) acceptance testing to verify with the
client (Batavierenrace) that the system meets the predefined requirements.

8.1 Resources

To make testing as efficient as possible, we chose to use an online server for both the PostgreSQL and
RabbitMQ servers. This way, we have access to a working test server whenever we want and it allows us
to easily share test data within the team. In addition, Docker was used to easily run all applications locally
side by side. With the push of a button, the software can be built and the processes can be started.

8.2 Test plan

8.2.1 Unit testing

8.2.1.1 Message server

The standard Python unittest package was used for unit testing in the MS. This allows the creation of a
test class in which test cases can be defined. Before and after the test, certain actions can be performed
such as establishing a connection to a server or clearing a database. Also, before and after each test case a
certain action can be performed. A total of three different tests were implemented within the message
server: a test for the RabbitMQ connection, a test for message handling and a test for the connection to the
PostgresQL database. All test cases within the 3 test classes can be run within a Python development
environment at the click of a button. Afterwards, the command line shows the result indicating which tests
passed and which failed.

In Figure 8.2.1.1.1 is an example of a test case within the RMQ test class. This test case is used to test
sending a message to the RMQ server.

Figure 8.2.1.1.1: Unit test for sending a message to the RMQ server

In Figure 8.2.1.1.2 is an example of a test case within the DB test class. This test case tests the creation
and retrieval of a record within the table note.

27

Figure 8.2.1.1.2: Unit test for creating a note

In Figure 8.2.1.1.3 is an example of a test case within the message processing test class. This test case
tests the processing of a runner registration.

Figure 8.2.1.1.3: Unit test for registering a runner

8.2.1.2 Front-end

For the front-end, we made the choice at the beginning of the project not to implement unit testing. The
reason for this is that in our view, the only good way to test it properly is to use an automated testing
framework such as Selenium. However, the initial learning curve of using Selenium is rather steep and
most of the team members had no experience with it. Also, with the development of 3 different
applications and a database, the amount of workload was already quite high. It would be a good add-on to
add unit tests to the front-end after this project.

8.2.1.3 Back-end

As mentioned before, we made the choice to not make use of Spring Boot’s Service classes. Therefore,
we only have to write tests for the controllers as the logic is there. Spring Boot also offers its own testing
framework, so we decided to use this. Instead of writing JUnit tests Spring Boot allows you to test all
endpoints by using a MockMVC. Writing a series of tests where we execute “get -> add -> get -> delete
-> get” on a specific object we can test if the various endpoints work correctly and see if the data is
returned correctly according to the defined DTO’s. To execute all tests, make sure to switch to the
test-database in the applications.xml and run the project using the command: “./gradlew test” instead of
“./gradlew bootRun” inside the project.

28

8.2.2 Integration testing

To test that all 4 parts of the system (message server, database, front-end and back-end) work together correctly, the integration test below was
written. It is important to do all test cases. As soon as a step cannot be performed or the result is not as expected, this should be noted down in the
result and comment. If any of the test cases do not succeed, the system should be changed and all tests should be done again.

Test case Action Expected result Result Comment

1 Run ‘docker-compose -f
docker-compose-dev.yml up –build’ to start
all applications using docker

All apps should start ✓ -

2 Check in the docker logs of the back-end Back-end should be connected to the DB and fully
started without any errors

✓ -

3 Check in the docker logs of the front-end Front-end should be started and reachable on
http://localhost. The logs should not contain any
errors and should be compiled.

✓ Several compile
warnings are listed
because of un-used
resources

4 Login in the front-end using a whitelisted
Google email address.

The back-end should process the HTTP request and
return a session token. The front-end should redirect
to the homepage.

5 Check the docker logs of the message server Message server should be connected to both the DB
and the RMQ server and fully started

✓ -

6 Insert a test message into the RMQ ebpc
queue

The message should be consumed by the message
server, this should be visible in the logs

✓ -

7 Check the lbi-cdb queue of the RMQ server This queue should contain the message previously
inserted, now in XML format. The data should be
the same.

✓ -

29

http://localhost

8 Check message log page inside the front-end The previously inserted message should be visible
in the table and should contain the same data as the
message.

✓ -

9 Reset the database in the front-end on the
settings page.

All non-static data in the DB should be removed. ✓ -

10 Reset the message server logs in the
front-end on the settings page.

All log files of the message server should be empty. ✓ -

11 Create a new user on the settings page in the
front-end.

The page should reload and show the new user in
the table. Also, the new user should be existing in
the user table inside the database.

✓ -

12 Insert another test message into the RMQ
server which requires ebpc messages to be
sent via RMQ (e.g. start times).

The message server should process the message and
show this in the logging. It should also insert
records in the sent_message_ebpc table. Then the
message server should send the messages to the
correct wp queue.

✓ -

Table 8.2.2.1: Integration test for the whole system

30

8.2.3 Acceptance testing

To verify that the system functions as expected, an acceptance test was written. This test is mainly intended to test the functional operation of the
front-end. The test consists of several test cases in which a certain action must be performed in each step. The application should return a certain
response, such as updating a table with data or adding a row to the table. The table also contains references to established requirements. This
means that once this test case can be completed successfully, the stated requirement has been met. Before running the test, the DB must be
populated with test data. The test plan was completed together with the client (the batavierenrace) and the results of this have been listed.

Test case Feature Requirement Action Expected result Result Comment

1 Secure login
incorrect email

FE-9 Login using a
non-whitelisted Google
email address

Pop-up should appear saying email
address is incorrect

✓ -

2 Secure login FE-9 Login using a whitelisted
Google email address

Redirect to homepage ✓ -

3 Shome time
registrations

FE-1 Go to the time registrations
page.

Table should be filled with time
registration entries

✓ -

4 Show status of
a waypoint

FE-2 Go to the homepage Per WP the used RK, open/closed,
runners passed and last update
time should be visible

✓ -

5 Show log of
received
messages.

FE-3 Go to the message log page Table should be filled with message
log entries

✓ -

6 Assign back-up
transponder

FE-4 Go to the transponders
page, click on add and fill
in a team and transponder
number

The transponder assignment should
be added and shown in the table

✓ -

31

7 Configure MS
environment

FE-6 Go to the settings page and
change the MS environment

Data in all the tables should change
since the database also changed.

X Development of
this feature is not
finished yet

8 Reset database FE-7 Go to the settings page and
click the reset database
button

All non-static data in the database
should be cleared so most tables on
pages should now be empty

✓ -

9 Show
components

FE-11 Go the components page All component sets should be
visible and the components that are
currently in there

✓ -

10 Edit
components

FE-11 Edit a component set The component should disappear
from the other set and re-appear in
the set you made the edit in.

✓ -

11 View notes FE-12 Go to the notes page There should be note entries visible
in the table

✓ -

12 Create a note FE-12 Create a new note The new note should appear in the
table displaying the WP, set and
message

✓ -

13 Store user info FE-13 Go to the settings page and
scroll down to users

The table should display the email
address and last activity timestamp
of each user

✓ -

14 Message log
per waypoint

FE-15 Go to the detail page of
waypoint 1

There should be a table showing
messages from only waypoint 1

✓ -

15 Reset MS log
files

FE-16 Go to the settings page and
click on reset MS logs

The MS logs should be emptied ✓ -

Table 8.2.3.1: Acceptance tests with the linked requirement

32

9. Conclusion

9.1 Requirements verification

To verify which requirements we met or partially met, we went through the requirements in Tables 9.1.1.1
- 9.1.4.1 with the client (Batavierenrace). The requirements we were unable to meet were underlined. If
applicable, the reason for non-compliance is indicated in blue below the requirement. In the end, we were
able to implement all requirements with a 'must have' priority. In addition, we managed to develop many
requirements with a 'should' and 'could' priority as well.

9.1.1 Message server (MS)

ID Priority Description

MS-1 M Communicate with RMQ server by consuming messages from the RK queues and
publishing messages to the eBPC queue.

MS-2 M Store and retrieve data from a PostgreSQL DB.
MS-3 M Process log entries (LBR format) coming from each active RK via RMQ.
MS-4 M Forward received LBR messages as LBI messages to the correct RMQ exchange.
MS-5 M Store incoming and outgoing messages in the DB.
MS-6 M Store incoming and outgoing messages in local text files.
MS-7 M Forward time registrations and transponder registrations to the correct RKs.
MS-8 M Convert an LBR to an LBI message.
MS-9 M Process the received LBR and LBI messages based on the existing eBART protocol.
MS-10 S Log all actions done in the MS.
MS-11 S Restart the application without losing any data.
MS-12 S Configure RMQ and database settings in a local configuration file.
MS-13 S Create unit tests for all developed features.
MS-14 C Save information in a structured way inside the DB.
MS-15 C Being able to test the MS by processing old race data (containing LBR lines) from a

text file.
MS-16 C Run inside a Docker container.
MS-17 C Handle losing DB connection by retrying the connection till it succeeds.
MS-18 C Use multiple environments (production, testing, development) to switch between

different configurations.

Table 9.1.1.1: Summary of requirements for the message server

9.1.2 Front-end (FE)

ID Priority Description
FE-1 M Show both manual and automatic runner registrations.
FE-2 M Show WP status information (used RK, open/closed, # runners passed, time since

33

last message received).
FE-3 M Show log of received messages by the MS.
FE-4 M Register a back-up transponder and connect it to a certain team.
FE-5 M Data from/to the back-end is formatted in JSON.
FE-6 M MS environment can be configured.
FE-7 M All data in the DB can be cleared.
FE-8 S Retrieve and send data from/to the back-end via HTTPS requests.

Currently requests are HTTP, it is possible to change this to HTTPS but this requires
certificates to be added.

FE-9 S The website should not be publicly available and therefore protected by a login.
FE-10 C Custom log entries can be registered.

Since all data in the front-end is split into multiple pages were if necessary you can
also add data we decided during the design phase that it should not be possible to
make message log entries in the front-end.

FE-11 C Status of components can be managed (in which set they are currently).
FE-12 C Notes can be viewed and created. This note could contain a device and/or waypoint.
FE-13 C Store user and session information of users that login into the website.
FE-14 C Show the battery status of a RK.

During the project, it turned out that an RK does not yet transmit battery status. As
we do not have this data, we could not implement this function.

FE-15 C Show log of received messages per WP.
FE-16 C All log files of the MS can be cleared.
FE-17 C Run inside a Docker container.
FE-18 W Keep track of the status of components like working or defective.

We keep track of which components are in a component set but not their status.

Table 9.1.2.1: Summary of requirements for the front-end

9.1.3 Back-end (BE)

ID Priority Description
BE-1 M Retrieve and insert data from/in the DB via a JDBC connection.
BE-2 M Process HTTPS requests from the BE and answer in JSON format.
BE-3 M Configure DB settings inside a local configuration file.
BE-4 M Store data inside the DB in a clear and structured way.
BE-5 C Run inside a Docker container.

Table 9.1.3.1: Summary of requirements for the back-end

9.1.4 Database (DB)

ID Priority Description
DB-1 M Store received LBR and LBI messages.
DB-2 M Store sent LBI and EBPC messages.

34

DB-3 M Store devices and status of each device (should be updatable).
DB-4 M Store status of a waypoint (should be updatable).
DB-5 M Store runner registration information.
DB-6 S Store received messages that have an incorrect format/structure.
DB-7 S Store team information.
DB-8 S Store transponder information.
DB-9 S Store battery status information (should be updatable).

This information can be stored and the message server is also programmed to do so
but as earlier mentioned this data is not available yet.

DB-10 S Store notes created in the front-end. Optionally connected to a WP or RK.
DB-11 C Store team notes of normal teams.
DB-12 C Store team notes of university teams.
DB-13 C Store display info messages.
DB-14 C Store start times of teams.
DB-15 C Store start procedures of teams.
DB-16 C Store device messages received from both an RK and the WS.
DB-17 C Store user information of the front-end.
DB-19 C Store status of components (in which set they are currently, should be updatable).

Table 9.1.4.1: Summary of requirements for the database

9.2 Future work

Despite the fact that we managed to create a beautiful system with many functionalities within 10 weeks,
there are certain things that could be improved or that could still be researched. Some of these things are
necessarily essential before you could use the system in production during the batavierenrace, other things
are simply nice to add.

● Together with the batavierenrace set-up a production environment on one of the batavierenrace
servers. This will take some effort since you have to deal with lots of configuration like SSH
connections, vpn, SSL certificates, Docker environment variables etc.

● Run the system during the next batavierenrace as a shadow next to the current system to test its
performance. In this way it is not yet mission critical since the system can fail without the race
itself being in danger.

● Run more tests with the message server regarding its connection to the Rabbit MQ broker.
Examples include losing the server connection, receiving a message with an incorrect format and
sending many messages to the message server at once. Currently, a synchronous RabbitMQ
connection is used. This means that receiving and sending a message takes up the only thread
within the application. It is possible that due to the amount of data within a short period of time,
an asynchronous connection should still be used. More research should reveal this.

● Add unit testing to the front-end by using Selenium, for instance. This will probably take a lot of
time to build but once you have it, it is a quick, validated way to test the front-end after making
changes.

35

● Implement HTTPS requests between the back-end and the front-end. Since the React application
runs client-side, the client must be able to send requests to the back-end in a secure way. This
requires the use of HTTPS requests instead of HTTP which in turn requires the implementation of
certificates.

● Visualise extra data in the front-end that is already available in the database as extra pages.
Examples include start times, start procedures, team penalties and device messages.

● Add more internal tests inside all applications to sanitise user inputs, check types before parsing
types (e.g. string to int conversion) and add more logging to make all apps more understandable
for a future developer.

9.3 Evaluation

Looking back on the project, we are incredibly proud of what we managed to put together in 10 weeks.
Despite the complex existing protocol and architecture into which the new system had to be incorporated,
we managed to create a concrete plan within the first 2 weeks. Then we started designing the database and
once it was almost finished, we divided the tasks and started developing the applications. The message
server, back-end and front-end were developed separately but through continuous consultation with each
other. An API specification was created for the connection between the back-end and front-end. Because
of this, both the back-end developer and front-end developer knew what the HTTP headers and responses
should look like. For the design of the front-end, several mock-ups were made which we then showed to
the batavierenrace. After some feedback, we made some more adjustments to the design. Next, we were
quite easily able to translate the design into components in React.

During the project, we had weekly meetings with our supervisor Tom van Dijk. In these we discussed the
progress, went through technical problems such as optimising SQL queries in the back-end and went
through the planning. Every two weeks we also met with Lotte and Sarah from the Batavierenrace. Here
the focus was mainly on the progress and current functionalities of the front-end. We are satisfied with the
communication within the project. There was clear communication to each other about what needs to be
done, who is going to do it, when and who is going to review it. Also, the daily stand-ups were a nice way
to start the day and hear from each other what you did the day before and/or if there are things you need
help with.

A discussion about the back-end framework Spring Boot arose at the beginning of the project. The
learning curve turned out to be quite high, making it difficult to create something working at first.
Therefore, Niels indicated that he is familiar with Rust and could easily build a back-end in it. He started
working on it right away. We were of course pleased with this new option, but within the group Max
expressed his concerns about using Rust. One disadvantage of it is that few people know it and it is
therefore difficult to maintain. This is critical if we were to eventually use the system during the
Batavierenrace. Because of this reason, it was finally decided to continue with Spring Boot. This is a good
example of some discussion and disagreement within the group that was correctly handled and resolved
through good communication.

36

9.4 Individual contributions

Below is an overview of the division of tasks within the project.

● Lieke Turenhout: front-end, presentation slides designer, slides presenter, poster designer.
● Max Jeltes: database, message server, front-end, slides presenter.
● Niels Kruk: front-end and back-end.
● Ruben de Koning: front-end and back-end.
● Sybe de Oude: front-end, presentation slides designer, slides presenter, poster designer.

37

10. Bibliography

[1] CleverDeveloper0929. (2023). Devias-Material-Kit-Pro. GitHub.
https://github.com/CleverDeveloper0929/Devias-Material-Kit-Pro

[2]MVC Design Pattern. (2023, September 27). Geeksforgeeks.
https://www.geeksforgeeks.org/mvc-design-pattern/

[3] Ranjan Rout, A. (2022, May 22). Data Transfer Object (DTO) in Spring MVC with Example.
Geeksforgeeks. https://www.geeksforgeeks.org/data-transfer-object-dto-in-spring-mvc-with-example/

[4] Using OAuth 2.0 to Access Google APIs. (2023, October 18). Google.
https://developers.google.com/identity/protocols/oauth2

38

https://github.com/CleverDeveloper0929/Devias-Material-Kit-Pro
https://www.geeksforgeeks.org/mvc-design-pattern/
https://www.geeksforgeeks.org/data-transfer-object-dto-in-spring-mvc-with-example/
https://developers.google.com/identity/protocols/oauth2

Appendices

39

A. New system architecture

Figure A.1: Architecture of the new system

40

B. Front-end mock-ups

Figure B.1: Mockup of the login page

Figure B.2: Mockup of the login page version 2

41

Figure B.3: Mockup of a ‘home’ page

Figure B.4: Mockup of the overview page (visual representation)

42

Figure B.5: Mockup of the overview page (tabular representation)

Figure B.6: Mockup of the WP specification pages

43

Figure B.7: Mockup of the registrations page

Figure B.8: Mockup of the transponders page

44

Figure B.9: Mockup of the notes page

Figure B.10: Mockup of the log page

45

C. Front-end screenshots

46

Figure C.1: Screenshot of the login page

47

Figure C.2: Screenshot of the homepage (waypoint overview)

48

Figure C.3: Screenshot of the waypoint specification page

49

Figure C.4: Screenshot of the components page

50

Figure C.5: Screenshot of the time registrations page

51

Figure C.6: Screenshot of the transponders page

52

Figure C.7: Screenshot of the notes page

53

Figure C.8: Screenshot of the message log page

54

Figure C.9: Screenshot of the top half of the settings page

55

Figure C.10: Screenshot of the bottom half of the settings page

56

D. Database ER diagram

Figure D.1: The database entity relation diagram

57

E. Message server application state diagram

Figure E.1: The message server application state diagram

58

